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Abstract
Analytical expressions are derived as a first-order approximation for the elastic
displacement fields, including both phonon- and phason-type components,
induced by spherical inclusions in icosahedral quasicrystals (IQCs). The
phonon-type component obtained is the same as that for a spherical inclusion in
conventional elastically isotropic crystals, while the expression for the phason-
type displacement, which decreases with increasing distance r to the sphere
centre as r−1, is derived for the first time. Three concrete cases are discussed.
The phonon part of the analytical expressions has been used to simulate the
black–white double-lobe contrasts in the x-ray topograph (XRT) images of the
strain field around the pores in the AlPdMn IQCs. The analytical expression
for the phason-type displacement is used to simulate the XRT images of the
strain field around spherical inclusions having isomorphic structures. The
striking resemblance between experimental and simulated images suggests that
such inclusions are surrounded by antiphase boundaries with a phason-type
displacement vector, being particular structural defects in IQCs.

1. Introduction

Icosahedral quasicrystals (IQCs) can be described as a three-dimensional (3D) cut of a
six-dimensional (6D) hypercubic crystal [1]. A 6D hyperspace may be divided into two
3D subspaces, the parallel or physical space E‖ and the perpendicular or mathematical space
E⊥. Consequently, the displacement field around a defect in quasicrystals consists of two
components, u and w. The phonon-type displacement field u ∈ E‖ is analogous to the field in
conventional crystals. The phason-type displacement field w ∈ E⊥ is peculiar to quasicrystals.
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There are two cases to be discussed here. First, when two domains of an IQC are obtained
by cutting a same 6D hypercubic crystal at different distances from the origin along the
perpendicular direction, these two domains are in the same local isomorphism class but with a
constant phason-type displacement w. As pointed out by Levine and Steinhardt [2] and Socolar
and Steinhardt [3], two quasicrystals are in the same local isomorphism class if and only if
(1) every finite atomic configuration in each occurs in the other; and (2) they have diffraction
patterns with identical intensities. Second, when the phason-type displacement w(r) is a
function of the position vector r, the varying phason-type displacement will cause some atom,
which contributes an atom at the position A of the quasicrystal, in the high-dimensional crystal
to be shifted out of the physical space, and hence the atom A in the physical space disappears.
At the same time some other nearby atom in the high-dimensional crystal is shifted into the
physical space, and hence contributes to an atom at the position B in the physical space. This
is equivalent to saying that the phason-type displacement causes the atom at the position A to
flip to the position B. Recently, Edagawa et al [4] observed directly the flips of atomic columns
in decagonal Al–Cu–Co quasicrystals by high-resolution transmission electron microscopy.
Both phonon- and phason-type defects have a strong influence on the mechanical and physical
properties of quasicrystal materials [1].

Considering this peculiarity of quasicrystals in which there are phason-type displace-
ments in addition to the conventional phonon-type displacements, the elasticity theory was
generalized to the case of quasicrystals (for example, [5–9]). Furthermore, the generalized
elasticity theory was successfully used to calculate the displacement fields around dislocation
lines in various quasicrystals (for example, [5–8] and papers cited therein). However, as far as
spherical inclusions are concerned, there has never been an attempt to generalize the classic
expression for the displacement field in an elastically isotropic crystal [10] to the case of qua-
sicrystals. This lack of theoretical consideration is in sharp contrast to the tremendous quantity
of experimental results [11–24], which is probably due to the spherical inclusions in IQCs.

The purpose of the present letter is to derive analytical expressions for both the phonon-
type and phason-type displacement fields, induced by a spherical inclusion in an IQC, with
some simplifications. These results are discussed in three cases for studying spherical defects in
IQCs, such as antiphase domains and pores (holes). Further probable concrete characterization
is considered for some experimental results [11–24].

2. Deducing an analytical expression for the elastic displacement field

According to the generalized elasticity theory, the displacement field variables u and w for
IQCs must satisfy the basic elasticity equilibrium equation in the Cartesian coordinate system,
with ei and e⊥

i (i = 1, 2, 3) the basis unit vectors in the parallel and perpendicular subspaces,
respectively, adopted by Ding et al as follows [5, 6, 9]:

µ∇2u1 + (λ + µ)∂1(∇ · u) + R(∂1∂1w1 + 2∂1∂3w1 − ∂2∂2w1

+ 2∂1∂2w2 − 2∂2∂3w2 + 2∂1∂3w3) + f1 = 0,

µ∇2u2 + (λ + µ)∂2(∇ · u) + R(−2∂1∂2w1 − 2∂2∂3w1 + ∂1∂1w2

− 2∂1∂3w2 − ∂2∂2w2 + 2∂2∂3w3) + f2 = 0,

µ∇2u3 + (λ + µ)∂3(∇ · u) + R(∂1∂1w1 − ∂2∂2w1

− 2∂1∂2w2 + ∂1∂1w3 + ∂2∂2w3 − 2∂3∂3w3) + f3 = 0,

K1∇2w1 + K2(2∂1∂3w1 − ∂3∂3w1 + 2∂2∂3w2 + ∂1∂1w3 − ∂2∂2w3) (1)

+ R(∂1∂1u1 − ∂2∂2u1 + 2∂1∂3u1 − 2∂1∂2u2 − 2∂2∂3u2 + ∂1∂1u3 − ∂2∂2u3)

+ g1 = 0,
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K1∇2w2 + K2(2∂2∂3w1 − 2∂1∂3w2 − 2∂1∂2w3 − ∂3∂3w2)

+ R(2∂1∂2u1 − 2∂2∂3u1 + ∂1∂1u2 − ∂2∂2u2 − 2∂1∂3u2 − 2∂1∂2u3) + g2 = 0,

(K1 − K2)∇2w3 + K2(∂1∂1w1 − ∂2∂2w1 − 2∂1∂2w2 + 2∂3∂3w3)

+ R(2∂1∂3u1 + 2∂2∂3u2 + ∂1∂1u3 + ∂2∂2u3 − 2∂3∂3u3) + g3 = 0,

where u = ∑3
i=1 uiei , w = ∑3

i=1 wie
⊥
i ; λ, µ, R, K1 and K2 are five independent elastic

constants for IQCs, in which λ and µ are related to the phonons, K1, K2 to the phasons,
R to the phonon–phason coupling; and f = ∑3

i=1 fiei , g = ∑3
i=1 gie

⊥
i are conventional

and generalized body force densities. The differential operators ∂i = ∂/∂xi (i = 1, 2, 3) and
∇ = ∑3

i=1 ei∂i are relative to the position vector r = ∑3
i=1 ei xi ∈ E‖ only. It should be

emphasized that both u and w only depend on the position vector r in the parallel space E‖.
Equation (1) is too complicated to solve in analytical form. In view of this, firstly, we

consider only the case in which the body force densities f and g can be omitted. Secondly,
we decouple u and w by letting R = 0, which has been used in the atomic modelling of
dislocations in Al–Pd–Mn IQCs [8]. Thirdly, we assume K2 = 0, which was proposed by
Bachteler et al [25] as the so-called ‘spherical approximation’. Under these assumptions the
basic equation (1) is reduced to

µ∇2u1 + (λ + µ)∂1(∇ · u) = 0,

µ∇2u2 + (λ + µ)∂2(∇ · u) = 0,

µ∇2u3 + (λ + µ)∂3(∇ · u) = 0,

K1∇2w1 = 0,

K1∇2w2 = 0,

K1∇2w3 = 0.

(2)

It can be written in vector form as

µ∇2u + (λ + µ)∇(∇ · u) = 0,

K1∇2w = 0.
(3)

It must be emphasized that IQCs, the quasicrystals of highest symmetry, are not elastically
isotropic. It is only when the elastic constants R = K2 = 0, as supposed in equations (2)
and (3), that an IQC behaves like an isotropic medium.

It is convenient to discuss the displacement field induced by a spherical inclusion in a
spherical coordinate system. For a spherical inclusion, the displacement fields u and w, which
fulfil equations (2) and (3), are only functions of the radial component r in the spherical
coordinate system, independent of θ and φ. Furthermore, u = u(r)r0 has only a radial
component, while w = w(r)w0 possesses an invariant direction w0, which is independent of
r, and a variable modulus w(r), which is a function of r . Thus equation (3) can be reduced
in the spherical coordinate system as follows (the details of the derivation are given in the
appendix):

d

dr

(
du

dr
+

2u

r

)
= 0,

d

dr

(
r2 dw

dr

)
= 0.

(4)

The general solutions of the differential equations (4) have the following forms:

u(r) = Ar + Br−2,

w(r) = C + Dr−1.
(5)
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In order to obtain the concrete analytical expressions for u and w we should give boundary
conditions. For a spherical defect of radius of r0 in an IQC, these conditions can be: r → 0,
u and w are finite; r → ∞, u = 0, w = 0; u and w are continuous at r = r0, thus we have

u =
{

ε1r (r � r0),
ε1r3

0 r−2 (r � r0),
(6a)

w =
{

ε2 (r � r0),

ε2r0r−1 (r � r0),
(6b)

where ε1 is a constant related to the elastic constants and the misfit between the spherical
particle (P) and matrix (M), and ε2w0 is a constant vector in perpendicular subspace describing
a phason-type shift of the spherical defect relative to the matrix.

The expression for ε1 may be obtained as follows: if δ = (aP − aM)/[(aP + aM)/2] is
the misfit between the spherical particle and matrix, the particle undergoes a homogeneous
strain of ε1 − δ and a pressure of 3(ε1 − δ)KP, where KP is the bulk modulus of the particle.
On the other hand, the radial strain in the matrix is du/dr = −2ε1r3

0 /r3 which corresponds
to a radial stress of −4µMε1 at the boundary (r = r0), where µM is the shear modulus of
the matrix. The elastic equilibrium between the particle and matrix requires continuity of the
stress at the boundary: 3(ε1 − δ)KP = −4µMε1, which leads to the following expression for
the constant ε1:

ε1 = 3KPδ

3KP + 4µM
. (7)

3. Applications of expressions (6) to the simulations of x-ray topography (XRT) images

3.1. Three concrete cases

The analytical expression derived here (equations (6)) for the phonon-type component u is the
same as that for a spherical inclusion in conventional elastically isotropic crystals [10], while
the expression for the phason-type displacement w, which decreases with increasing distance
r to the sphere centre as r−1, is derived for the first time. These results are useful for studying
the strain field around spherical inclusions in IQCs, such as pores (holes), bubbles, inclusion
phases, antiphase domains. There are three cases to be considered:

(1) w = 0, but u �= 0. If a spherical inclusion is a hole (pore), or a bubble, or a crystalline
precipitate, where no phason-type displacement relative to the matrix exists (ε2w0 = 0),
there would be no phason-type displacement field in the IQC matrix around these
inclusions, according to the continuity of the phason-type displacement at the boundary
of the defect.

Obviously this consideration is only a first-order approximation when the phonon–
phason coupling effect is neglected and the matrix is only deformed elastically around the
inclusion without any plastic deformation carried out by dislocation gliding.

(2) u = 0, but w �= 0. If the spherical inclusion is an IQC which possesses the same structure
and composition as the matrix, but is a local isomorphism with a non-zero phason-type
displacement ε2w0 relative to the IQC matrix, there will be a phason-type displacement
field but no phonon-type displacement field around the inclusion, because the misfit δ

between the spherical particle and matrix is equal to zero. The inclusion will be bounded
by a peculiar antiphase boundary which could be considered as a peculiar class of structural
defects in IQCs.
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Figure 1. (a) An experimental XRT image of the black–white double-lobe contrasts; (b) one
enlarged image of the black–white double-lobe contrast; (c) the corresponding simulated XRT
image.

(3) u �= 0, w �= 0. If the spherical inclusion is an IQC which possesses different structure
and/or composition compared with the matrix, and is a local isomorphism with a non-zero
phason-type displacement ε2w0 relative to the IQC matrix, there will be both phonon- and
phason-type displacement fields around the inclusion.

3.2. Application of expression (6a): black–white double-lobe contrasts

In experiments, pores [11–21, 23] are a common type of inhomogeneity, observed in various
quasicrystals, in addition to structural defects such as dislocations, small dislocation loops,
stacking faults. Audier et al [11] observed faceted holes of dodecahedral shape to develop
within the IQC phase by transmission electron microscopy when thin fragments of Al–Cu–Fe
alloys were annealed within the microscope. Beeli et al [12] found faceted micro-holes in
slowly cooled icosahedral single Al–Mn–Pd quasicrystals by scanning electron microscopy
(SEM). Gödecke and Lück [13] reported their SEM observation of polyhedral etch pits,
showing pentagons or decagons and triangles as facets, in Al–Pd–Mn IQCs. Waseda et al
[14, 15] analysed the dodecahedral voids in single-quasicrystalline Al–Pd–Mn IQCs by SEM
and Auger electron spectroscopy. Ross et al [16] observed the formation and morphological
development of porosity (unfaceted and faceted) in Al–Pd–Mn IQCs.

Recently, Mancini et al [17] demonstrated by phase-sensitive radiography (PSR) that the
dodecahedral pores are also located in the bulk of Al–Pd–Mn IQCs. Besides this technique,
this group also exploited x-ray topography (XRT) to observe the strain field around the pores
and their evolution during annealing [17–21, 23]. By combining these two techniques, a
correspondence was found between the black–white double-lobe contrasts shown in figure 1(a),
observed by XRT, and the dodecahedral pores observed by PSR. Above that, the black–white
double-lobe contrasts in XRT images were simulated, using a 3D displacement field calculated
by u in expression (6a). The simulation was carried out by using the program TOPLANE [26]
in the monochromatic case. One simulated image is shown here in figure 1(c), which shows
good agreement with the corresponding experimental one, shown in figure 1(b). This is just
case (1) discussed in section 3.1.

3.3. Application of expression (6b): loop-shaped contrasts (LSCs)

Besides the black–white double-lobe contrasts induced by pores, Gastaldi and his
colleagues [17–19, 21–24] observed other novel loop-shaped contrasts (LSCs) in Al–Pd–Mn
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Figure 2. (a) An experimental XRT image of the LSCs; (b) an enlarged XRT image of a LSC;
(c) the corresponding simulated XRT image when G⊥ · B⊥ �= 0 is adopted.

and Al–Cu–Fe IQCs by XRT and no correspondence was found between the LSCs and the
pores by PSR. Hence these LSCs were not caused by the strain field around pores.

Further preliminary experimental observations were performed on the LSCs.

(1) We observed LSCs in as-grown Al70.3Pd20.6Mn9.1 IQC by means of traditional XRT
(Lang’s technique). Various diffraction vectors were excited to record XRT images [22],
of which one is shown in figure 2(a). Detailed analysis of the extinction phenomena as
listed in [22] reveals that the extinction is due to G⊥ · B⊥ = 0, with B = [11̄01̄01].

(2) The LSCs cannot be ascribed to dislocation loops due to annealing behaviour different
from that for dislocations [19].

(3) The same diffracted intensity for the inner and outer parts of the LSCs indicates that the
atomic structures of these two parts are almost the same [24].

(4) The intensity of the LSCs becomes weaker on using reflections of smaller perpendicular
components G⊥ in the XRT experiment [24].

All these experimental observations prompt us to explain the LSC as caused by a strain field
around a novel, peculiar class of antiphase domain, of which the interior is a local isomorphism
with a non-zero phason-type displacement ε2w0 (i.e. B⊥) relative to the IQC matrix, as
discussed in case (2) of section 3.1.

Thus the displacement field w in equations (6b) of the present letter was used to simulate
the LSC XRT image also by using the TOPLANE program [26]. When G⊥ · B⊥ �= 0 was
used, we got the LSC in the simulated XRT image as shown in figure 2(c). The agreement
between the experimental (figure 2(b)) and the simulated (figure 2(c)) XRT images supports
this explanation of the LSCs.

4. Conclusions

In this letter, we obtain the analytical expressions as a first-order approximation for the
elastic displacement fields, including both phonon- and phason-type components, induced
by spherical inclusions in IQCs. Three concrete cases are discussed. Then, the phonon part
of the analytical expressions was used to simulate the black–white double-lobe contrasts in
the XRT images of the strain field around the pores in the AlPdMn IQCs. The analytical
expression for the phason-type displacement is used to simulate the LSCs of the strain field
around spherical inclusions having isomorphic structures. The striking resemblance between
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experimental and simulated images suggests that such inclusions are surrounded by antiphase
boundaries with a phason-type displacement vector, being particular structural defects in IQCs.

This work was partially supported by the Scientific Research Foundation for the Returned
Overseas Chinese Scholars, State Education Ministry, the National Natural Science Foundation
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grateful to Professors Di-Hua Ding and Chengzheng Hu, and Drs J Härtwig, H Klein and S
Agliozzo for useful discussions, and to Professor Y Epelboin for providing the TOPLANE
program and discussions on simulation.

Appendix. Derivation of the elastic equations (4)

Notice that the unit vectors r0, θ0 and φ0 in the spherical system are not constant but vary with
the coordinates r , θ and φ; we have

∇u = ∇(ur0) = r0
du

dr
r0 + θ0

u

r
θ0 + φ0

u

r
φ0,

∇ ·
(

r0
du

dr
r0

)
= r0

r2

d

dr

(
r2 du

dr

)
,

∇ ·
(

θ0
u

r
θ0

)
= −r0

u

r2
+ θ0

u

r2
cot θ,

∇ ·
(

φ0
u

r
φ0

)
= −r0

u

r2
− θ0

u

r2
cot θ.

Hence we have

∇2u = ∇2(ur0) = r0
d

dr

(
du

dr
+

2u

r

)
.

Moreover, we have

∇(∇ · u) = ∇[∇ · (ur0)] = ∇
[

1

r2

d

dr
(r2u)

]
= r0

d

dr

(
du

dr
+

2u

r

)
.

Hence the equation

µ∇2u + (λ + µ)∇(∇ · u) = (λ + 2µ)r0
d

dr

(
du

dr
+

2u

r

)
= 0

is reduced to the first of equations (4).
Since the unit vector w0 in w = ww0 is a constant vector in the perpendicular subspace,

which indicates that w0 is independent of r, and w is a function of only r ,

∇2w = ∇2(ww0) = w0

r2

d

dr

(
r2 dw

dr

)
= 0.

Hence the equation ∇2(ww0) = 0 leads to d
dr

(
r2 dw

dr

) = 0, which is the second of equations (4).
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